

Learning Objectives

- 1. Analyze the current research demonstrating the potential role of strawberries and their bioactive components in cardiometabolic health.
- 2. Identify the bioactives in strawberries that may contribute to their positive impact on cardiometabolic health.
- 3. Describe future direction of research on strawberries and other fruits and their relationship to and impact on cardiometabolic health.

Arpita Basu, PhD, RD/LD

Associate Professor Kinesiology and Nutrition Sciences University of Nevada at Las Vegas

arpita.basu@unlv.edu

What We'll Cover: Specifics

- Dietary exposure: strawberries' phytochemical and nutritional composition
- Health outcomes: cardiometabolic health, metabolic syndrome, and vascular dysfunction (risks)
- Relationship: how do dietary strawberries effect vascular dysfunction in high-risk adults?
 - Systematic review and meta-analyses
 - Clinical trials
- Summary and practical applications

Potential Health Benefits of Strawberries

Afrin et al. J Agric Food Chem 2016

Nutritional/Bioactive Composition of Strawberries (Selected)

Bioactive Compounds	Specific to Strawberries	Nutrients	Amou Fresh
•		Water	91g
Flavonoids		Energy	32kca
Anthocyanins	Pelargonidin	Carbohydrates	7.7g
Flavonols	Quercetin	Dietary fiber	2g
Flavanols	Catechin	Potassium	153m
		Sodium	1mg
Phenolic acids		Vitamin C	59mg
Hydroxycinnamic acid	Caffeic acid	Folate	24mg
Hydroxybenzoic acid	Gallic acid	Thiamin	0.024
		Riboflavin	0.022
Hydrolyzable tannins	Ellagitannins	Niacin	0.38

Eckel et al. Lancet 2005

Cardiometabolic Health

- The normal functioning of the cardiovascular and metabolic systems, typically reflected by:
 - Body weight/adiposity
 - · Blood glucose and lipids
 - Blood pressure and hormonal control
 - Blood coagulation
 - Inflammation markers
- Cardiometabolic diseases include:
 - Obesity
 - Diabetes
 - Atherosclerotic cardiovascular disease
 - Hypertension
 - · Chronic kidney disease
 - Heart failure

Poor Cardiometabolic Health in the US

- Metabolic syndrome represents poor cardiometabolic health
- According to CDC data, 88 million adults (1 in) have prediabetes or metabolic syndrome (including impaired glucose metabolism/insulin resistance)
- Health disparities in prediabetes/metabolic syndrome
 - Higher prevalence in Hispanics vs. non-Hispanic Whites
- Role of specific foods in metabolic syndrome must be explored, as changing the entire diet can be challenging for many!
- Role of strawberries in metabolic syndrome?

Lichtenstein et al. Circulation 2021

Prediabetes/Metabolic Syndrome: A Risk Factor of Vascular and Metabolic Dysfunction

- Hyperglycemia
- · Lipids and lipoproteins
 - LDL-C, small, and medium lipid particles
 - Dyslipidemia (high TG, low HDL)
- Oxidative stress
 - Oxidized lipids play an important role in endothelial dysfunction and atherosclerosis
- Inflammation
 - Adhesion molecules, cytokines, and C-reactive protein shown to promote endothelial dysfunction (IL-6, TNF, MMP, CRP)
- Diet and lifestyle factors
 - High fat and low fiber diets
 - Physical inactivity
 - Smoking

Epidemiological Evidence

- Blueberries and strawberries prevent hypertension?
- Prospective cohort:
 - Nurses' Health Study (NHS) II: n=87,242
 - NHS I: n=46,672
 - Health Professionals Follow-Up Study (HPFS): n=23,043
 - 14y follow-up
- Highest quintile of anthocyanin intake (~18-25mg/d)
 (predominantly from blueberries and strawberries) associated
 with an 8% reduction in risk for HTN compared with the
 lowest quintile of anthocyanin intake (5-7mg/day)
- Adjusted pooled analyses

Epidemiological Evidence

- Blueberries and strawberries reduce inflammation?
- Cross-sectional cohort:
 - n=2375
 - Framingham Heart Study Offspring Cohort
 - Highest quintile of apples, pears, red wine and strawberries associated with a significantly lower inflammatory score compared with the lowest quintile of these food intakes
 - Adjusted pooled analyses

The Effect of Berry-Based Food Intervention on Markers of Cardiovascular and Metabolic Health: A Systematic Review of Randomized Controlled Trials

Berry interventions of significance (adults with cardiometabolic risks):

1. Blood pressure as an outcome

Chokeberry juice - 300mL for 8 weeks Blueberry beverage - 480mL for 8 weeks Cranberry juice - 480mL for 8 weeks Mixed berry puree/juice - 300g for 4 weeks

2. Endothelial function and arterial stiffness as outcomes

Cranberry juice - 250mL for 4 weeks

Blueberry beverage - 480-680mL for 6 and 8 weeks
Blackcurrant juice - 1000mL for 6 weeks

3. Adhesion molecules (ICAM, VCAM) as markers of endothelial dysfunction-

Strawberry beverage (powder) - 50g for 8 weeks

4. Blood glucose and insulin as outcomes

Cranberry juice - 240-480mL for 8 and 12 weeks Blueberry beverage (powder) - 45g for 6 weeks

5. Blood lipids as outcomes

Cranberry juice - 480mL for 8 weeks

Strawberry beverage (powder) - 30-50g for 8
and 12 weeks or 6h postprandial

Berry mix (fresh and puree) - 300g for 4 weeks

Mol. Nutr. Food Res. 2018, 62, 1700645

Strawberries and CVD: Meta-analysis of RTCs

- 11 RCTs included in the analysis
- Fresh and freeze-dried strawberries used as intervention
- Six RCTs showed a significant decrease in C-reactive protein as a biomarker of inflammation following strawberry intervention
- Three RCTs of adults with elevated total-cholesterol and four RCTs of adults with elevated LDL-cholesterol revealed improvements in lipid profiles following strawberry intervention

Effects of Strawberries on Cholesterol

Nutrient/Bioactive Compound	Strawberry Powder (LD-FDS)	Strawberry Powder (HD-FDS)
Total calories, Kcal	75	150
Total polyphenols, mg	1001	2005
Total anthocyanins, mg	78	155
Dietary fiber, g	4	8
Vitamin c, mg	55	109
Phytosterols, mg	23	50

LD-FDS: low dose strawberry 25g/day for 12 weeks HD-FDS: high dose strawberry 50g/day for 12 weeks Control groups matched for fiber and calories

Strawberries Improve Lipid Particle Size and Adhesion Molecules in Adults with Metabolic Syndrome

Decreased Inflammatory Markers in Adults with Metabolic Syndrome and Knee Osteoarthritis (OA) After 12-week Strawberry Supplementation (50g/day)

*SB = Strawberry

Basu et al. Food Function 2018; Basu et al. Nutrients 2017

Strawberries Improve Insulin Resistance in Adults with Metabolic Syndrome

Variable	Baseline	Control (4-Week)	Strawberry (LD) (4- Week)	Strawberry (HD) (4- Week)	p-Value (Treatment)
Serum Fasting Glucose, mg/dL	93 ± 13	93 ± 12	94 ± 11	93 ± 15	0.97
Serum HbA1c, %	5.5 ± 0.3	5.5 + 0.3	5.5 ± 0.3	5.5 ± 0.2	0.95
Serum Insulin, μIU/mL	15.4 ± 6.6	15.2 ± 6.4	14.0 ± 8.2	9.1 ± 3.1	0.0002
Serum HOMA-IR	3.6 ± 1.5	3.5 ± 1.4	3.3 ± 2.0	2.1 ± 0.5	0.0003
Serum hs-CRP, mg/L	4.3 ± 3.2	4.4 ± 3.5	4.3 ± 3.1	3.8 ± 2.9	0.85
Serum adiponectin, μg/mL	9.3 ± 5.7	10.5 ± 6.2	11.4 ± 5.2	11.7 ± 7.2	0.84

Effects of freeze-dried strawberries on glycemic control and insulin resistance in a 14-week crossover RCT of 4 weeks each (n=33 in each phase). LD: low-dose strawberries (1 serving/day); HD: high-dose strawberries (2.5 servings/day)

Basu et al. Antioxidants 2021

Practical Applications

- Strawberries exert significant anti-diabetic effects by decreasing insulin resistance and blood lipid peroxides
- Strawberries exert significant anti-inflammatory effects by decreasing blood cytokines that are associated with diabetes-related atherosclerosis

• Strawberries have been shown (in adults) to be **beneficial in reducing lipids** and **small LDL lipid particles** that lead to vascular complications in diabetes

Strawberries and Cardio-Metabolic Health: Current and Future Directions for Research

Britt Burton-Freeman, PhD

Professor, Food Science and Nutrition Director, Center for Nutrition Research Illinois Institute of Technology

bburton@iit.edu

Outline

- Strawberry Nutrition/Chemistry unique attributes
- Unique components
 - Absorbed?
 - Does eating more strawberries matter?
- Functional Benefits
 - What effects do strawberries have in the body?
- Practical Implications
- Future Directions for Research

Nutritional Bio- Chemistry

Park et al MNFR 2016 Chemical structures used with permission from Y. Huang

Health Promoting Constituents

Hydroxybenzoic acids

P-hydrobenzoic acid Protocatechuic acid Vanillic acid Syringic acid Gallic acid

Hydroxycinnamic acids

Coumaric acid
Caffeic acid
Ferrulic acid
Sinapic acid
Caffeoylquinic acid

Sandhu et al 2018, Huang et al 2021

Bioavailability

Are the components in strawberries absorbed?

Anthocyanins from Strawberries Peak within 1-3 h Early phase

Sandhu et al JAFC 2016

Absorption Patterns of Larger-Sized Tannin Components

Burton-Freeman Lab

Image by Frederic Marback under license GNU Free Documentation License: https://en.wikipedia.org/wiki/GNU_Free_Documentation_License Image by NotWith under license Attribution-Share Alike 3.0 Unported: https://creativecommons.org/licenses/by-sa/3.0/deed.en
Image by Hindram under license Attribution-Share Alike 4.0 International: https://creativecommons.org/licenses/by-sa/4.0/deed.en

Ellagitannin Metabolites - Late Phase

Dose-Response → **Strawberry Anthocyanins**

Strawberry Ellagitannin Metabolites (Urolithins) Increase in the Blood with Daily Intake

Sandhu et al Food Func 2018

The Story So Far...

- Strawberry signature compounds
 - → Anthocyanins and Ellagitannins

They are absorbed and metabolized by the human body

• INCREASE in blood with amount of strawberry consumed and with regular consumption

Cardiometabolic Disease Risk

Insulin Resistance/Sensitivity

Endothelial Function and Vascular Flexibility

Many of the Risk Factors for CVDs are Precipitated by Insulin Resistance

Diabetes increases risk of heart attack and stroke by 2 to 4 times

Adapted from Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106(4):453-458; and Adeva-Andany MM, Martínez-Rodríguez J, González-Lucán M, Fernández-Fernández C, Castro-Quintela E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab Syndr. 2019;13(2):1449-1455.

Early Phase Metabolites and Post-Meal Fuel Metabolism

Insulin Resistance Status Responses to Typical Western Style Meal

Greater the insulin resistance, greater the insulin demand for glucose control -Hyperinsulinemia-

Burton-Freeman Lab, Park et al MNFR 2016

Insulin Signaling (Muscle Cells)

Insulin-Responsive Cells

Graphic courtesy of Indika Edirisinghe, Illinois Institute of Technology. Used with permission.

High Carb/High Fat Breakfast Meal

- + Control beverage vs
- + Strawberry beverage
 - ~ 1 cup fresh fruit

Strawberry (~1 cup or 110 g Fresh) vs Control Drink with a Meal Reduced the Amount of Insulin Needed for Glucose Control in Overweight Men and Women

Edirisinghe et al. BJN 2011

Insulin Resistance and Strawberries

Could strawberries help improve insulin action in people who are insulin resistant?

Implications:

- Reverse insulin resistance
- Prevent the transition to diabetes

Acute Challenge Meal Study

Randomized 4 treatment crossover

Beverage Nutrient Composition

Insulin Resistance Dose-Response Study

	0 g FDS	10 g FDS	20 g FDS	40 g FDS
	Control Beverage	Strawberry Beverage	Strawberry Beverage	Strawberry Beverage
Calories (kcal)	324	313	310	333
Protein (g)	10	9	9	11
Carbohydrate (g)	67	67	68	73
Fiber (g)	8.5	8.3	8.2	8.7
Sugar (g)	63	62	60	61
Fat (g)	1.6	1.4	1.5	2.0
Vitamin C* (mg)	22	27	38	59
Total ANCY (mg)	0.0	42.2	87.9	154.5
Plg-3-Glc (mg)	0.0	35.2	72.3	123.8

Park et al. MNFR 2016

Less Insulin Needed

When Eating a Meal with a Strawberry Drink

Plasma Glucose Adults with Abdominal Obesity and Insulin Resistance

Type 2 DM: Strawberry
Intake for 6 Weeks (50g per
day) Improves Glucose
Control (HbA1c), Reduces
Lipid Oxidation, Decreases
Inflammation (hsCRP)

Type 2 DM: Purified
Anthocyanin
Supplementation for 24 weeks
(160 mg bid) Reduces
Dyslipidemia,
Enhances Antioxidant Capacity,
Improves Glycemic, Insulin
Resistance, and Inflammation
Status

Strawberries' Benefits ... the Story So Far

Vessel Health - Flow Mediated Vasodilation

1% increase in diameter = 10% decrease CVD risk

Burton-Freeman Lab

Variables	Total Subjects	
	(n=34)	
Age (year)	53 ± 1	
Male: Female	17 : 17	
BMI (kg/m²)	30.6 ± 0.6	
SBP (mmHg)	120.3 ± 2.1	
DBP (mmHg)	78.4 ± 1.6	
TC (mg/dL)	203.8 ± 3.7	
LDL (mg/dL)	132.9 ± 3.0	
Glucose (mg/dL)	104.8 ± 1.5	

Randomized, Blinded, Cross-over Design

4 weeks Strawberry intake (freeze-dried powder, 2 x 25 g/d, ~ 170 kcal) vs

4 weeks Control Powder (packets, 2 x 25 g/d, ~ 170 kcal)

Fasting blood samples (0 h)
Flow mediated vasodilation (0 h and 1 h after assigned drink)
Blood Pressure (0 h, 1 h, 2 h after assigned drink)

Huang et al J Nutr 2021

Strawberry and Endothelial Function: FMD Vessel Relaxation Tone Improves

2h Systolic BP Attenuated After 4-Week Daily Strawberry Intake Compared to Energy Matched Control

Strawberries' Benefits

Addressing the Fruit Gap

Increases AMOUNT of total fruit consumed

Increases DIVERSITY of nutrients and phytochemical "bioactives" in the diet

Practical Implications

- Global Burden of Disease (GBD) study tells us a DIET LOW in FRUIT is among the TOP 3 dietary risk factors for CVD and diabetes
- Increasing fruit <u>variety</u> lowers risk of developing diabetes
- Evidence is required to develop policy, set recommendations, and inform people of what foods/fruits and how much to eat to optimize health

As little as 1 cup per day of strawberries shows beneficial effects

Future Directions in Research

- Precision nutrition for health
- Individualizing recommendations

Our Team

Our Team

Indika Edirisinghe
Amandeep Sandhu
Chelsea Pries
Morganne Freeman
Elizabeth Guzman
Olga Marguis
Sameer Tunio
Katherine Pett
Casey Weifress
Krishan Hirimuthugoda

FDA Collaborators

Lauren Jackson CFSAN colleagues

Students

Current and Past
Undergraduate and Graduate Students

Research Participants

IIT/IFSH staff Health care / Medic Staff

Thank You

Britt Burton Freeman, PhD

bburton@iit.edu

Image and logo used with permission.

Q&A

COMPLIMENTARY LIVE WEBINAR

Therapeutic Lifestyle
Changes for Prediabetes
and Type 2 Diabetes

Vicki Shanta Retelny, RDN

November 30, 2022 2–3 pm ET

