

Heartland Food Products Group #22971 has been approved by the CDR to offer 1.0 CPEU for this webinar.

Learning Objectives

After completing this activity, nutrition professionals will better be able to:

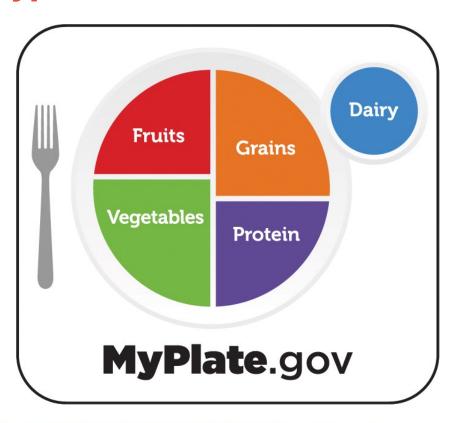
- 1. Recommend types of proteins and intake amounts to patients with diabetes and weight management goals based on the latest guidelines.
- 2. Explain how protein intake affects glycemia, insulin, satiety, and weight.
- 3. Identify various types and sources of protein and describe current trends in protein intake.
- 4. Select and recommend nutrition shakes for supplemental or substitutive protein intake.

Current Protein
Recommendations
& Intakes

Dietary Reference Intakes (DRIs) for Protein¹

Recommended Dietary Allowance (RDA)

0.8 grams/kg body weight/day


<u>Acceptable Macronutrient</u>
<u>Distribution Range (AMDR)</u>

10–35% of total calories

Remember:

- ✓ DRIs are standards for the general adult population, not those who have disease or may be nutrient deficient
- ✓ DRIs refer to average daily intake over time
- ✓ RDA is the *minimum*, not the optimum, recommendation

MyPlate Protein Recommendation is Consistent with Typical Protein Intake in US, <u>13-16%</u> of Total Calories^{2,3}

- ✓ Eat a variety of protein foods
- ✓ Meat and poultry choices should be lean or low-fat
- ✓ Choose seafood options that are higher in omega-3s and lower in methylmercury
- ✓ Vegetarian protein options include beans, peas, and lentils, nuts, seeds, and soy products

Protein Recommendations Vary Across DRIs & MyPlate

	RDA	AMDR	MyPlate
What's Needed for Calculation	Weight in kilograms	Daily calorie goal	Daily calorie goal & age
Formula	0.8 g/kg body weight/day	10-35% of total calories	N/A
EXAMPLE: Protein recommendation for 30 y/o male weighing 70 kg and aiming for 2600 calories/day	56 grams	65-227.5 grams	~100 grams 6.5 ounces protein 3 cups dairy 2 cups fruit 3.5 cups vegetables 9 ounces grains

American Diabetes Association: Standards of Care – 2023 Protein Recommendations⁴

There is no evidence that adjusting the daily level of protein intake (typically 1–1.5 g/kg body wt/day or 15–20% total calories) will improve health.

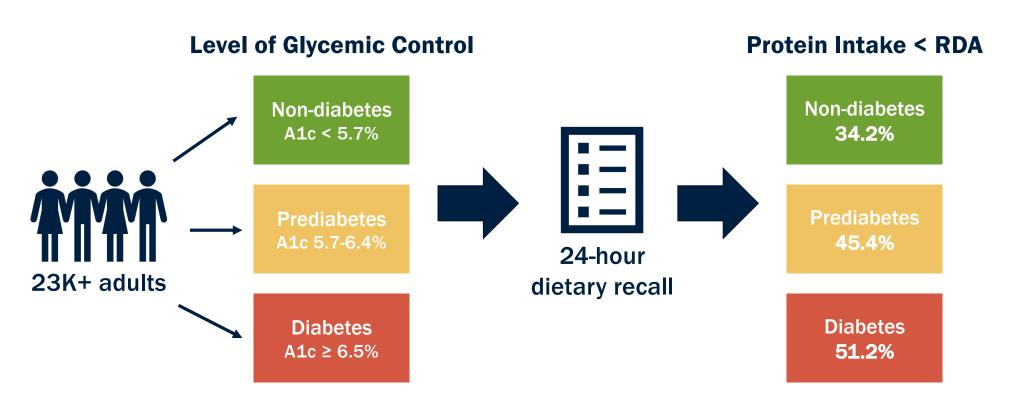
Protein intake goals should be **individualized** based on current eating patterns. Some research has found successful management of type 2 diabetes with meal plans including slightly higher levels of protein (20–30%), which may contribute to increased satiety.

American Diabetes Association: Standards of Care – 2023 Protein Recommendations (continued)⁴

Current evidence does not suggest that people with diabetic kidney disease (DKD) need to restrict protein to less than the generally recommended protein intake (0.8 g/kg body wt/day).

For people with non-dialysis dependent stage 3 or higher chronic kidney disease, dietary protein intake should be aimed to a target level of 0.8 g/kg body wt/day.

For patients on dialysis, higher levels of dietary protein intake should be considered since protein energy wasting is a major problem in some individuals on dialysis.


Joslin Diabetes: Protein Guideline for Overweight & Obese Adults with Type 2 Diabetes, Prediabetes, or Those at High Risk for Type 2 Diabetes⁵

Protein intake should range between 1.0-1.5 grams/ kg of adjusted body weight. This amount generally accounts for 20% to 30% of total caloric intake.

A modest increase in protein **reduces appetite and helps achieve and maintain weight reduction**. Protein also helps **minimize loss of lean body mass** during weight reduction.

No reliable scientific data support a protein intake that exceeds 2 grams/kg of adjusted body weight. Conversely, reduction of protein intake to less than 0.8 grams/kg day may result in **protein malnutrition**.

US Adults with Diabetes are Least Likely to Meet the RDA for Protein⁶

Low Protein Intake is Associated with Poor Diet Quality and Functional Limitations in US Adults with Diabetes⁶

- Less Calories
- More Total Carb
- More Added Sugar
- Lower Total Healthy Eating Index (HEI)Score

Diabetes
Protein Intake < RDA

- Lowest grip strength
- Physical limitations for:
 - Stooping
 - Crouching
 - Kneeling

Higher Protein Intake Associated with a Lower Risk of Prediabetes & Diabetes in Canadians & Europeans⁷

4 Population Studies

Canada

The Netherlands

The Netherlands

Finland

Self-Reported Diabetes Diagnosis, A1c, or FPG

FFQ or 3-day dietary record

Mean Total Protein (g/kg/day)

Canada **1.3**

The Netherlands **0.98**

The Netherlands **1.0**

Finland **1.4**

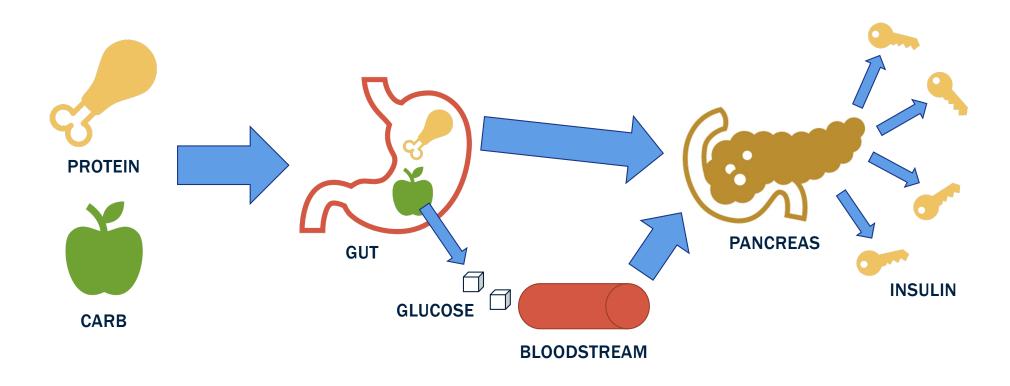
Pooled Incidence Ratio

Prediabetes 0.84

Diabetes **0.49**

FPG = Fasting Plasma Glucose FFQ = Food Frequency Questionnaire

78K+ adults


Effect of Protein on Diabetes & Weight-Related Measures

TRUE OR FALSE?

50-60% of dietary protein is consumption.

Ultimately, Dietary Protein Has Minimal Effect on Blood Glucose; Rather, it Promotes Insulin Secretion^{6,7,8}

However, <u>Large</u> Amounts of Protein Alone Significantly Increase Postprandial Blood Glucose in People with Type 1 Diabetes⁹

Water (Control)

0 g protein

Glucose Drink

10 g, 20 g carbohydrate

20 g glucose drink caused significantly higher pp glucose excursions from 30 min to 5 hr (no insulin given)

Protein Drink

12.5 g, 25 g, 50 g, 75 g, 100 g protein

75 g & 100 g protein drinks caused significantly higher pp glucose excursions from 3-5 hr

Studies Showing That High-Protein Meals Can Impact Blood Glucose Demonstrate the Need for Additional Insulin Covered 4.10

Insulin Coverage^{4,10}

Should I take additional insulin for high-protein meals?

How much additional insulin should I take?

Factors to consider:4

- ✓ Method of glucose monitoring (meter, CGM)
- √ Frequency of glucose monitoring
- ✓ Insulin type (basal, bolus)
- ✓ Method of insulin delivery (injection, pump)
- ✓ Food literacy, numeracy, interest, and capability

Academy of Nutrition & Dietetics: Dietary Approaches to Consider for Adults with Overweight or Obesity¹¹

Diet	Description
Higher-Protein Diet	25% of total calories from protein, 45% from carbohydrate, 30% from fat
Higher-Protein zone-type diet	5 meals/day, each with 30% of total calories from protein, 40% from carbohydrate, 30% from fat
Moderate-protein diet	12% of total calories from protein, 58% from carbohydrate, 30% from fat
Meal replacement	Liquid or bar meal replacements

Macronutrient Composition of Popular Diets Compared to USDA Recommendations^{12,13,14}

Diet	Carb	Fat	Protein	g/kg/day Protein*
USDA AMDR	45-65%	20-35%	<mark>10-35%</mark>	<mark>0.7-2.3</mark>
Atkins 20™	5-10%	60-70%	<mark>20-30%</mark>	1.3-2.0
Keto	5-10%	70-80%	10-20%	<mark>0.7-1.3</mark>
South Beach	28%	33%	<mark>39%</mark>	<mark>2.6</mark>
Zone	40%	30%	<mark>30%</mark>	<mark>2.0</mark>

A High-Protein Diet is Thought to Increase Satiety and Thus Promote Weight Loss^{12,15,16}

Mechanisms

- Increased secretion of satiety hormones (GLP-1, CCK, PYY)
- Reduced ghrelin secretion
- Increased thermic effect of food
- Elevated concentrations of plasma amino acids
- Protein-induced alterations in gluconeogenesis
- Preservation of lean body mass

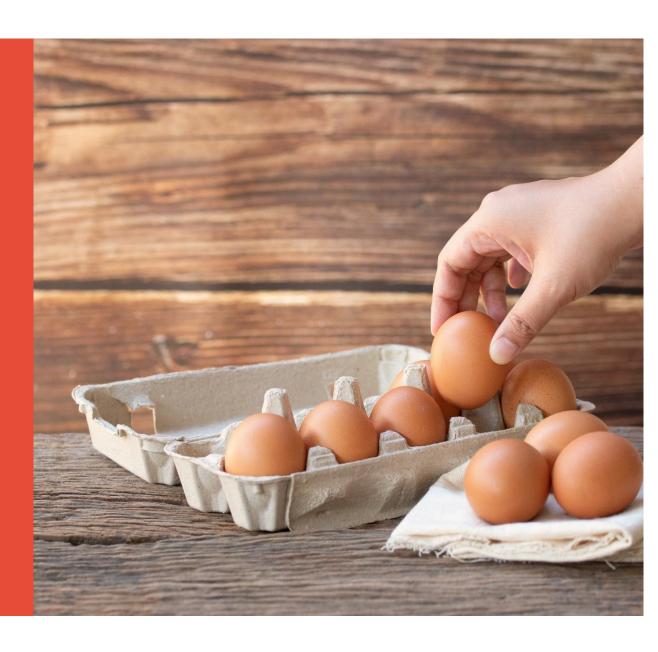
Caveats

- Limiting carbs can lead lower intake of fiber and other key nutrients
- Increased acid load to the kidneys
- Increased risk of kidney stone formation
- Increased intake of animal protein can increase risk of hyperlipidemia and hypercholesterolemia
- Possible increased risk for T2DM

Dietary Protein's Effect on Satiety & Hunger Hormones¹⁶

Hormone	Protein's Effect	Mechanism of Action
Glucagon-Like Peptide 1 (GLP-1)		Delays gastric emptying, stimulates insulin secretion, and inhibits glucagon secretion
Cholecystokinin (CCK)		Releases digestive enzymes and bile from the pancreas and gallbladder, respectively
Peptide YY (PYY)		Acts on brain receptors to reduce appetite and limit food intake
Ghrelin	-	Acts on brain receptors to stimulate appetite, increase food intake, and promote fat storage

Protein Has a Higher Thermic Effect Than Carbohydrate and Fat, Which Can Be Helpful for Weight Loss^{12,15,16}


Thermic Effect of Food (TEF) – Increased energy expenditure that results from nutrient processing (i.e., digestion, absorption, transport, metabolism, & storage)

Protein Types, Sources, & Intake Trends

Protein Quality is Determined by Assessing Amino Acid Composition & Bioavailability¹⁷

Complete

(Contain all 9 essential amino acids)

- ✓ Animal-based protein foods
 - ✓ Meat, fish, eggs, milk products
- ✓ Soybeans and soy products
- ✓ Ouinoa
- √ Chia seeds

Incomplete

(Lack ≥ 1 essential amino acid)

- ✓ Most plant-based protein foods
 - ✓ Beans, peas, lentils, nuts, seeds, whole grains, vegetables

Recommend consuming a variety of protein foods!

Protein Content Varies Widely Across Foods¹⁷

Animal-Based Protein Sources

Plant-Based Protein Sources

Food	Serving Size	Protein
Chicken breast	3 ounces	26 g
Lean beef	3 ounces	26 g
Salmon	3 ounces	23 g
Tuna, canned	3 ounces	20 g
Cottage cheese	½ cup	14 g
Milk	8 ounces	8 g
Egg	1 large	6 g

Food	Serving Size	Protein
Soybeans/tofu	½ cup	9 g
Lentils	½ cup	9 g
Kidney beans	½ cup	8 g
Peanut butter	2 tablespoons	7 g
Hummus	1/3 cup	6 g
Chia seeds	2 tablespoons	6 g
Quinoa	½ cup	4 g

Protein "Lingo" On Food Labels 17,18

Nutrient Content Claim	Meaning	Example Food
"High" Protein	Contains 10 grams or more per serving (20% or more of the DV per RACC)	Greek yogurt
"Good Source" of Protein	Contains 5–9.9 grams per serving (10–19% of the DV per RACC)	Regular yogurt
"More" Protein	Contains at least 5 grams more* per serving (At least 10% more of the DV per RACC than reference food)	Protein shake
"Protein-Fortified"	Protein added to food during processing that was not normally present	Protein pancake and waffle mix
"Protein-Enriched"	Protein added back to food that was lost during processing	Enriched bread

IFIC Surveys Reveal Consumer Viewpoints & Purchasing Behaviors Regarding Protein^{19,20}

59%

Are Trying To
Consume Protein

3 in 4

Identify as Omnivores

Taste

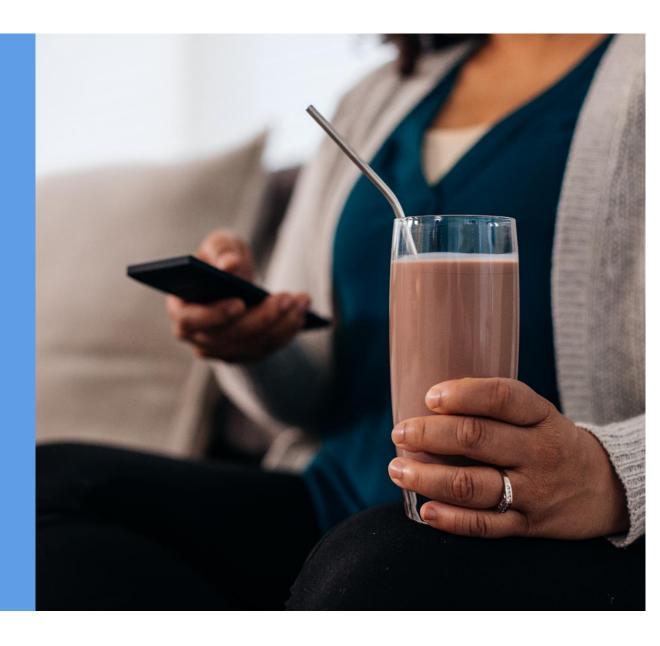
Top Consideration for Protein Choices

Balance

Top Reason for Protein Consumption

Dinner

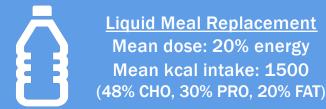
When Most Consume Protein


3 in 10

Are Eating More Plant-Based Protein

From 1999-2016, Estimated Energy Intake from Protein Increased Among US Adults²¹

Nutrition Shakes as a Source of Protein



Liquid Meal Replacements as Part of Weight Loss Diet Provided Significant Benefits to People with Overweight/Obesity & Type 2 Diabetes²²

Systematic
Review &
Metanalysis:
9 RCTs

INTERVENTION

Traditional

Weight Loss Diet

Mean kcal intake: 1500

(55% CHO, 25% PRO, 17% FAT)

RESULTS

<u>Liquid Meal</u> <u>Replacement</u>

BMI

Body Fat

Waist Circumference

HbA1c

Fasting glucose

Fasting insulin

Systolic BP

Diastolic BP

There Are a Variety of Nutrition Shakes Available for Different Needs & Goals

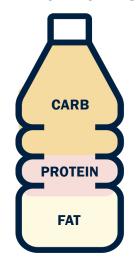
Standard
Shakes
Carb
Fiber
Protein
Fat

Protein
Shakes
Carb
Fiber
Protein
Fat

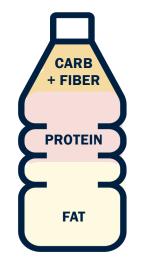
Weight Loss
Shakes
Carb
Fiber
Protein
Fat

Diabetes
Shakes
Carb
Fiber
Protein
Fat

Diabetes-Specific Nutrition Shake Formulas Significantly Reduce Postprandial Blood Glucose Rise Compared to Standard Shake Formulas²³


VS.

Systematic Review:


23 total studies (16 oral, 7 tube feeding)

784 participants (type 1 or type 2 diabetes)

STANDARD NUTRITION FORMULA

~58% CARB ~16% PROTEIN ~26% FAT DIABETES-SPECIFIC NUTRITION FORMULA

~15% CARB ~38% PROTEIN ~47% FAT Calories

Fiber

Protein

Monounsaturated fat

Use of Diabetes-Specific Shakes as Breakfast & Snack Improved Glycemic Control in People with Type 2 Diabetes²⁴

Randomized Clinical Trial **TITLE** 81 participants

INTERVENTION

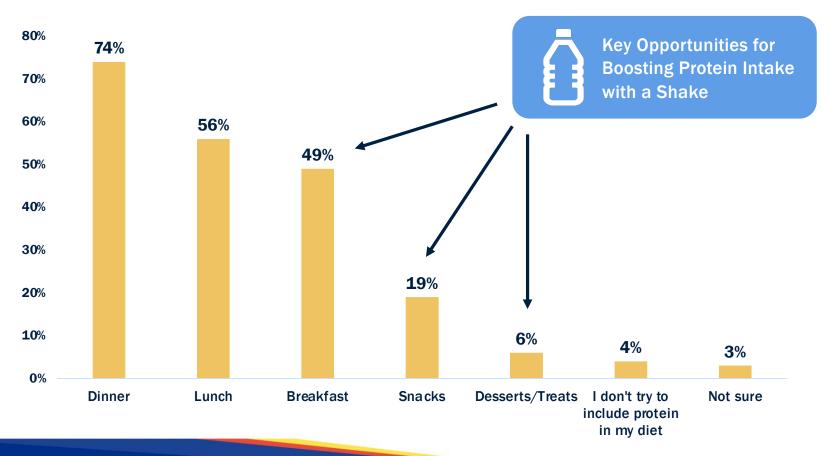
Control: No Shakes

2 Shakes: Breakfast & Afternoon Snack

2 Shakes: Breakfast & Bedtime Snack

Monitored by CGM

RESULTS


Breakfast Shake:

✓ Significantly improved AM pp glucose response

Breakfast Shake + Afternoon Snack Shake:

- ✓ Reduced nocturnal glucose variability
- ✓ Increased confidence in choosing foods
- ✓ Reduced food cravings

IFIC Survey Revealed Most People Get Their Protein at Dinner and Lunch²⁰

Meal Skipping Comes with Risks – Shakes Can Help Fill in the Gaps!

Skipping Breakfast^{25,26}

- Associated with overweight/obesity
- Increased risk for overweight/obesity
- Consume more kcal at lunch and dinner
- Reduces daily diet quality (Healthy Eating Index Score)
- Consume less fruit, whole grains, and dairy

Skipping Dinner²⁶

- > Reduces daily energy intake
- > Reduces daily diet quality (Healthy Eating Index Score)
- Consume less vegetables, beans, dairy, protein, and seafood

Your Patients Can Integrate Shakes into Their Daily Eating Pattern in a Variety of Ways

WHEN (

- ✓ Appetite is poor
- ✓ Don't have a taste for traditional protein foods
- ✓ Have no time to prepare a meal or snack
- ✓ Tempted to skip a meal
- ✓ On-the-go

- ✓ Meal or snack replacement
- ✓ Drink with a meal to boost nutrition
- ✓ As a dessert or sweet treat
- ✓ As part of a recipe

"Shake up" Shakes By Using Them in Recipes!

Summary

- Protein recommendations vary across sources; counseling should be individualized based on patients' preferences and goals
- People with diabetes are the <u>least likely</u> to meet the RDA for protein, which can have nutritional and functional consequences
- Dietary protein has minimal impact on glucose and insulin, but can increase satiety and therefore help promote weight loss
- To maximize nutritional benefits, consuming a variety protein foods is recommended
- Nutrition shakes, particularly <u>diabetes-specific shakes</u>, provide additional benefits to people with diabetes, including weight reduction and improved glycemic outcomes

Thank you!

Questions?

Holly Moran, MS, RD, LD, CDCES

holly.moran@heartlandfpg.com

References

- 1. National Academy of Medicine (formerly Institute of Medicine). 2005. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. https://doi.org/10.17226/10490.
- 2. Wolfe RR, Cifelli AM, Kostas G, Kim IY. Optimizing Protein Intake in Adults: Interpretation and Application of the Recommended Dietary Allowance Compared with the Acceptable Macronutrient Distribution Range. Adv Nutr. 2017;8(2):266-275. Published 2017 Mar 15. doi:10.3945/an.116.013821
- 3. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020-2025. 9th Edition. December 2020. Available at DietaryGuidelines.gov.
- 4. ElSayed NA, Aleppo G, Aroda VR, et al. 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Supplement_1):S68-S96. doi:10.2337/dc23-S005
- 5. Hamdy O, Ganda OP, Maryniuk M, Gabbay RA; Members of the Joslin Clinical Oversight Committee. CHAPTER 2. Clinical nutrition guideline for overweight and obese adults with type 2 diabetes (T2D) or prediabetes, or those at high risk for developing T2D. Am J Manag Care. 2018;24(7 Spec No.):SP226-SP231.
- 6. Fanelli SM, Kelly OJ, Krok-Schoen JL, Taylor CA. Low Protein Intakes and Poor Diet Quality Associate with Functional Limitations in US Adults with Diabetes: A 2005-2016 NHANES Analysis. Nutrients. 2021;13(8):2582. Published 2021 Jul 27. doi:10.3390/nu13082582
- 7. Sluik D, Brouwer-Brolsma EM, Berendsen AAM, et al. Protein intake and the incidence of pre-diabetes and diabetes in 4 population-based studies: the PREVIEW project. Am J Clin Nutr. 2019;109(5):1310-1318. doi:10.1093/ajcn/nqy388
- 8. Campbell AP, Rains TM. Dietary protein is important in the practical management of prediabetes and type 2 diabetes. J Nutr. 2015;145(1):164S-169S. doi:10.3945/in.114.194878
- 9. Paterson MA, Smart CE, Lopez PE, et al. Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Diabet Med. 2016;33(5):592-598. doi:10.1111/dme.13011
- 10. Bell KJ, Toschi E, Steil GM, Wolpert HA. Optimized Mealtime Insulin Dosing for Fat and Protein in Type 1 Diabetes: Application of a Model-Based Approach to Derive Insulin Doses for Open-Loop Diabetes Management. Diabetes Care. 2016;39(9):1631-1634. doi:10.2337/dc15-2855
- 11. Morgan-Bathke M, Raynor HA, Baxter SD, et al. Medical Nutrition Therapy Interventions Provided by Dietitians for Adult Overweight and Obesity Management: An Academy of Nutrition and Dietetics Evidence-Based Practice Guideline. J Acad Nutr Diet. 2023;123(3):520-545.e10. doi:10.1016/j.jand.2022.11.014
- 12. Pesta DH, Samuel VT. A high-protein diet for reducing body fat: mechanisms and possible caveats. Nutr Metab (Lond). 2014;11(1):53. Published 2014 Nov 19. doi:10.1186/1743-7075-11-53
- 13. Diet Review: Ketogenic Diet for Weight Loss. Harvard T.H. Chan School of Public Health. Updated ND. Accessed February 24, 2023. https://www.hsph.harvard.edu/nutritionsource/healthy-weight/diet-reviews/ketogenic-diet/#:~:text=Generally%2C%20popular%20ketogenic%20resources%20suggest,carbohydrate%2C%20and%2075%20grams%20protein.

References

- 14. Atkins vs Keto: Low Carb Diet Approaches. Atkins. Updated September 26, 2018. Accessed February 24, 2023. https://www.atkins.com/how-it-works/blog/is-atkins-the-better-keto-diet#:~:text=Atkins%2040%3A%20Fat%3A%2055%25,Carbs%3A%2010%25%20to%2015%25
- 15. Kim JY. Optimal Diet Strategies for Weight Loss and Weight Loss Maintenance. J Obes Metab Syndr. 2021;30(1):20-31. doi:10.7570/jomes20065
- 16. Cuenca-Sánchez M, Navas-Carrillo D, Orenes-Piñero E. Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health. Adv Nutr. 2015;6(3):260-266. Published 2015 May 15. doi:10.3945/an.114.007716
- 17. Duyff RL. Protein Power. In: Academy of Nutrition & Dietetics Complete Food & Nutrition Guide. 5th ed. Academy of Nutrition & Dietetics; 2017:373-384.
- 18. Institute of Medicine (US) Committee on Examination of Front-of-Package Nutrition Rating Systems and Symbols; Wartella EA, Lichtenstein AH, Boon CS, editors. Front-of-Package Nutrition Rating Systems and Symbols: Phase I Report. Washington (DC): National Academies Press (US); 2010. Appendix B, FDA Regulatory Requirements for Nutrient Content Claims.
- 19. International Food Information Council. 2022 Food & Health Survey. 18 May 2022. https://foodinsight.org/2022-food-health-survey/
- 20. International Food Information Council. Plant and Animal Protein Choices: Consumer Viewpoints and Purchasing Behaviors. 26 January 2021. https://foodinsight.org/plant-and-animal-protein-consumer-survey/
- 21. Shan Z, Rehm CD, Rogers G, et al. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999-2016. JAMA. 2019;322(12):1178-1187. doi:10.1001/jama.2019.13771
- 22. Noronha JC, Nishi SK, Braunstein CR, et al. The Effect of Liquid Meal Replacements on Cardiometabolic Risk Factors in Overweight/Obese Individuals With Type 2 Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Diabetes Care. 2019;42(5):767-776. doi:10.2337/dc18-2270
- 23. Elia M, Ceriello A, Laube H, Sinclair AJ, Engfer M, Stratton RJ. Enteral nutritional support and use of diabetes-specific formulas for patients with diabetes: a systematic review and meta-analysis. Diabetes Care. 2005;28(9):2267-2279. doi:10.2337/diacare.28.9.2267
- 24. Mustad VA, Hegazi RA, Hustead DS, et al. Use of a diabetes-specific nutritional shake to replace a daily breakfast and afternoon snack improves glycemic responses assessed by continuous glucose monitoring in people with type 2 diabetes: a randomized clinical pilot study. BMJ Open Diabetes Res Care. 2020;8(1):e001258. doi:10.1136/bmjdrc-2020-001258
- 25. Ma X, Chen Q, Pu Y, et al. Skipping breakfast is associated with overweight and obesity: A systematic review and meta-analysis. Obes Res Clin Pract. 2020;14(1):1-8. doi:10.1016/j.orcp.2019.12.002
- 26. Zeballos E, Todd JE. The effects of skipping a meal on daily energy intake and diet quality. Public Health Nutr. 2020;23(18):3346-3355. doi:10.1017/S1368980020000683